Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1363169, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515747

RESUMO

Zika virus (ZIKV) can be vertically transmitted during pregnancy resulting in a range of adverse pregnancy outcomes. The decidua is commonly found to be infected by ZIKV, yet the acute immune response to infection remains understudied in vivo. We hypothesized that in vivo African-lineage ZIKV infection induces a pro-inflammatory response in the decidua. To test this hypothesis, we evaluated the decidua in pregnant rhesus macaques within the first two weeks following infection with an African-lineage ZIKV and compared our findings to gestationally aged-matched controls. Decidual leukocytes were phenotypically evaluated using spectral flow cytometry, and cytokines and chemokines were measured in tissue homogenates from the decidua, placenta, and fetal membranes. The results of this study did not support our hypothesis. Although ZIKV RNA was detected in the decidual tissue samples from all ZIKV infected dams, phenotypic changes in decidual leukocytes and differences in cytokine profiles suggest that the decidua undergoes mild anti-inflammatory changes in response to that infection. Our findings emphasize the immunological state of the gravid uterus as a relatively immune privileged site that prioritizes tolerance of the fetus over mounting a pro-inflammatory response to clear infection.


Assuntos
Complicações Infecciosas na Gravidez , Infecção por Zika virus , Zika virus , Gravidez , Humanos , Feminino , Animais , Macaca mulatta , Leucócitos
2.
Front Immunol ; 14: 1267638, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37809089

RESUMO

Introduction: Zika virus (ZIKV) infection during pregnancy results in a spectrum of birth defects and neurodevelopmental deficits in prenatally exposed infants, with no clear understanding of why some pregnancies are more severely affected. Differential control of maternal ZIKV infection may explain the spectrum of adverse outcomes. Methods: Here, we investigated whether the magnitude and breadth of the maternal ZIKV-specific antibody response is associated with better virologic control using a rhesus macaque model of prenatal ZIKV infection. We inoculated 18 dams with an Asian-lineage ZIKV isolate (PRVABC59) at 30-45 gestational days. Plasma vRNA and infectious virus kinetics were determined over the course of pregnancy, as well as vRNA burden in the maternal-fetal interface (MFI) at delivery. Binding and neutralizing antibody assays were performed to determine the magnitude of the ZIKV-specific IgM and IgG antibody responses throughout pregnancy, along with peptide microarray assays to define the breadth of linear ZIKV epitopes recognized. Results: Dams with better virologic control (n= 9) cleared detectable infectious virus and vRNA from the plasma by 7 days post-infection (DPI) and had a lower vRNA burden in the MFI at delivery. In comparison, dams with worse virologic control (n= 9) still cleared detectable infectious virus from the plasma by 7 DPI but had vRNA that persisted longer, and had higher vRNA burden in the MFI at delivery. The magnitudes of the ZIKV-specific antibody responses were significantly lower in the dams with better virologic control, suggesting that higher antibody titers are not associated with better control of ZIKV infection. Additionally, the breadth of the ZIKV linear epitopes recognized did not differ between the dams with better and worse control of ZIKV infection. Discussion: Thus, the magnitude and breadth of the maternal antibody responses do not seem to impact maternal virologic control. This may be because control of maternal infection is determined in the first 7 DPI, when detectable infectious virus is present and before robust antibody responses are generated. However, the presence of higher ZIKV-specific antibody titers in dams with worse virologic control suggests that these could be used as a biomarker of poor maternal control of infection and should be explored further.


Assuntos
Complicações Infecciosas na Gravidez , Infecção por Zika virus , Zika virus , Gravidez , Feminino , Animais , Humanos , Macaca mulatta , Epitopos
3.
PLoS Pathog ; 19(8): e1011274, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37549143

RESUMO

Zika virus (ZIKV) can be transmitted vertically from mother to fetus during pregnancy, resulting in a range of outcomes including severe birth defects and fetal/infant death. Potential pathways of vertical transmission in utero have been proposed but remain undefined. Identifying the timing and routes of vertical transmission of ZIKV may help us identify when interventions would be most effective. Furthermore, understanding what barriers ZIKV overcomes to effect vertical transmission may help improve models for evaluating infection by other pathogens during pregnancy. To determine the pathways of vertical transmission, we inoculated 12 pregnant rhesus macaques with an African-lineage ZIKV at gestational day 30 (term is 165 days). Eight pregnancies were surgically terminated at either seven or 14 days post-maternal infection. Maternal-fetal interface and fetal tissues and fluids were collected and evaluated for ZIKV using RT-qPCR, in situ hybridization, immunohistochemistry, and plaque assays. Four additional pregnant macaques were inoculated and terminally perfused with 4% paraformaldehyde at three, six, nine, or ten days post-maternal inoculation. For these four cases, the entire fixed pregnant uterus was evaluated with in situ hybridization for ZIKV RNA. We determined that ZIKV can reach the MFI by six days after infection and infect the fetus by ten days. Infection of the chorionic membrane and the extraembryonic coelomic fluid preceded infection of the fetus and the mesenchymal tissue of the placental villi. We did not find evidence to support a transplacental route of ZIKV vertical transmission via infection of syncytiotrophoblasts or villous cytotrophoblasts. The pattern of infection observed in the maternal-fetal interface provides evidence of paraplacental vertical ZIKV transmission through the chorionic membrane, the outer layer of the fetal membranes.


Assuntos
Complicações Infecciosas na Gravidez , Infecção por Zika virus , Zika virus , Humanos , Animais , Gravidez , Feminino , Zika virus/genética , Macaca mulatta , Placenta , Complicações Infecciosas na Gravidez/metabolismo , Morte Fetal , Transmissão Vertical de Doenças Infecciosas , Membranas Extraembrionárias/metabolismo
4.
PLoS One ; 18(5): e0284964, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37141276

RESUMO

BACKGROUND: Congenital Zika virus (ZIKV) infection can result in birth defects, including malformations in the fetal brain and visual system. There are two distinct genetic lineages of ZIKV: African and Asian. Asian-lineage ZIKVs have been associated with adverse pregnancy outcomes in humans; however, recent evidence from experimental models suggests that African-lineage viruses can also be vertically transmitted and cause fetal harm. METHODOLOGY/PRINCIPAL FINDINGS: To evaluate the pathway of vertical transmission of African-lineage ZIKV, we inoculated nine pregnant rhesus macaques (Macaca mulatta) subcutaneously with 44 plaque-forming units of a ZIKV strain from Senegal, (ZIKV-DAK). Dams were inoculated either at gestational day 30 or 45. Following maternal inoculation, pregnancies were surgically terminated seven or 14 days later and fetal and maternal-fetal interface tissues were collected and evaluated. Infection in the dams was evaluated via plasma viremia and neutralizing antibody titers pre- and post- ZIKV inoculation. All dams became productively infected and developed strong neutralizing antibody responses. ZIKV RNA was detected in maternal-fetal interface tissues (placenta, decidua, and fetal membranes) by RT-qPCR and in situ hybridization. In situ hybridization detected ZIKV predominantly in the decidua and revealed that the fetal membranes may play a role in ZIKV vertical transmission. Infectious ZIKV was detected in the amniotic fluid of three pregnancies and one fetus had ZIKV RNA detected in multiple tissues. No significant pathology was observed in any fetus; and ZIKV did not have a substantial effect on the placenta. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that a very low dose of African-lineage ZIKV can be vertically transmitted to the macaque fetus during pregnancy. The low inoculating dose used in this study suggests a low minimal infectious dose for rhesus macaques. Vertical transmission with a low dose in macaques further supports the high epidemic potential of African ZIKV strains.


Assuntos
Complicações Infecciosas na Gravidez , Infecção por Zika virus , Zika virus , Humanos , Animais , Feminino , Gravidez , Zika virus/genética , Macaca mulatta/genética , Complicações Infecciosas na Gravidez/veterinária , Líquido Amniótico/metabolismo , Anticorpos Neutralizantes , Transmissão Vertical de Doenças Infecciosas/veterinária , RNA , Modelos Animais de Doenças
5.
J Neurosci Methods ; 388: 109811, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36739916

RESUMO

BACKGROUND: Understanding gait development is essential for identifying motor impairments in neurodevelopmental disorders. Defining typical gait development in a rhesus macaque model is critical prior to characterizing abnormal gait. The goal of this study was to 1) explore the feasibility of using the Noldus Catwalk to assess gait in infant rhesus macaques and 2) provide preliminary normative data of gait development during the first month of life. NEW METHOD: The Noldus Catwalk was used to assess gait speed, dynamic and static paw measurements, and interlimb coordination in twelve infant rhesus macaques at 14, 21, and 28 days of age. All macaque runs were labeled as a diagonal or non-diagonal walking pattern. RESULTS: Infant rhesus macaques primarily used a diagonal (mature) walking pattern as early as 14 days of life. Ten infant rhesus macaques (83.3%) were able to successfully walk across the Noldus Catwalk at 28 days of life. Limited differences in gait parameters were observed between timepoints because of the variability within the group at 14, 21, and 28 days. COMPARISON WITH EXISTING METHODS: No prior gait analysis system has been used to provide objective quantification of gait parameters for infant macaques. CONCLUSIONS: The Catwalk system can be utilized to quantify gait in infant rhesus macaques less than 28 days old. Future applications to infant rhesus macaques could provide a better understanding of gait development and early differences within various neurodevelopmental disorders.


Assuntos
Marcha , Caminhada , Animais , Macaca mulatta
6.
PLoS Negl Trop Dis ; 16(8): e0010623, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35926066

RESUMO

Countermeasures against Zika virus (ZIKV), including vaccines, are frequently tested in nonhuman primates (NHP). Macaque models are important for understanding how ZIKV infections impact human pregnancy due to similarities in placental development. The lack of consistent adverse pregnancy outcomes in ZIKV-affected pregnancies poses a challenge in macaque studies where group sizes are often small (4-8 animals). Studies in small animal models suggest that African-lineage Zika viruses can cause more frequent and severe fetal outcomes. No adverse outcomes were observed in macaques exposed to 1x104 PFU (low dose) of African-lineage ZIKV at gestational day (GD) 45. Here, we exposed eight pregnant rhesus macaques to 1x108 PFU (high dose) of African-lineage ZIKV at GD 45 to test the hypothesis that adverse pregnancy outcomes are dose-dependent. Three of eight pregnancies ended prematurely with fetal death. ZIKV was detected in both fetal and placental tissues from all cases of early fetal loss. Further refinements of this exposure system (e.g., varying the dose and timing of infection) could lead to an even more consistent, unambiguous fetal loss phenotype for assessing ZIKV countermeasures in pregnancy. These data demonstrate that high-dose exposure to African-lineage ZIKV causes pregnancy loss in macaques and also suggest that ZIKV-induced first trimester pregnancy loss could be strain-specific.


Assuntos
Complicações Infecciosas na Gravidez , Infecção por Zika virus , Zika virus , Animais , Modelos Animais de Doenças , Feminino , Humanos , Macaca mulatta , Placenta , Gravidez , Resultado da Gravidez , Zika virus/genética
7.
Viruses ; 13(9)2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34578459

RESUMO

Infants exposed to Zika virus (ZIKV) prenatally may develop birth defects, developmental deficits, or remain asymptomatic. It is unclear why some infants are more affected than others, although enhancement of maternal ZIKV infection via immunity to an antigenically similar virus, dengue virus (DENV), may play a role. We hypothesized that DENV immunity may worsen prenatal ZIKV infection and developmental deficits in offspring. We utilized a translational macaque model to examine how maternal DENV immunity influences ZIKV-exposed infant macaque neurodevelopment in the first month of life. We inoculated eight macaques with prior DENV infection with ZIKV, five macaques with ZIKV, and four macaques with saline. DENV/ZIKV-exposed infants had significantly worse visual orientation skills than ZIKV-exposed infants whose mothers were DENV-naive, with no differences in motor, sensory or state control development. ZIKV infection characteristics and pregnancy outcomes did not individually differ between dams with and without DENV immunity, but when multiple factors were combined in a multivariate model, maternal DENV immunity combined with ZIKV infection characteristics and pregnancy parameters predicted select developmental outcomes. We demonstrate that maternal DENV immunity exacerbates visual orientation and tracking deficits in ZIKV-exposed infant macaques, suggesting that human studies should evaluate how maternal DENV immunity impacts long-term neurodevelopment.


Assuntos
Animais Recém-Nascidos/crescimento & desenvolvimento , Dengue/imunologia , Sistema Nervoso/crescimento & desenvolvimento , Complicações Infecciosas na Gravidez , Infecção por Zika virus , Animais , Anticorpos Antivirais/sangue , Vírus da Dengue/imunologia , Modelos Animais de Doenças , Feminino , Desenvolvimento Fetal , Macaca mulatta , Atividade Motora , Orientação , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Zika virus/imunologia
8.
PLoS Negl Trop Dis ; 15(7): e0009641, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34329306

RESUMO

Concerns have arisen that pre-existing immunity to dengue virus (DENV) could enhance Zika virus (ZIKV) disease, due to the homology between ZIKV and DENV and the observation of antibody-dependent enhancement (ADE) among DENV serotypes. To date, no study has examined the impact of pre-existing DENV immunity on ZIKV pathogenesis during pregnancy in a translational non-human primate model. Here we show that macaques with a prior DENV-2 exposure had a higher burden of ZIKV vRNA in maternal-fetal interface tissues as compared to DENV-naive macaques. However, pre-existing DENV immunity had no detectable impact on ZIKV replication kinetics in maternal plasma, and all pregnancies progressed to term without adverse outcomes or gross fetal abnormalities detectable at delivery. Understanding the risks of ADE to pregnant women worldwide is critical as vaccines against DENV and ZIKV are developed and licensed and as DENV and ZIKV continue to circulate.


Assuntos
Vírus da Dengue , Dengue/imunologia , Troca Materno-Fetal , Infecção por Zika virus/patologia , Zika virus , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/metabolismo , Antígenos Virais , Dengue/virologia , Feminino , Transmissão Vertical de Doenças Infecciosas , Placenta , Gravidez , RNA Viral , Replicação Viral
9.
J Virol ; 95(16): e0222020, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34076485

RESUMO

Following the Zika virus (ZIKV) outbreak in the Americas, ZIKV was causally associated with microcephaly and a range of neurological and developmental symptoms, termed congenital Zika syndrome (CZS). The viruses responsible for this outbreak belonged to the Asian lineage of ZIKV. However, in vitro and in vivo studies assessing the pathogenesis of African-lineage ZIKV demonstrated that African-lineage isolates often replicated to high titers and caused more-severe pathology than Asian-lineage isolates. To date, the pathogenesis of African-lineage ZIKV in a translational model, particularly during pregnancy, has not been rigorously characterized. Here, we infected four pregnant rhesus macaques with a low-passage-number strain of African-lineage ZIKV and compared its pathogenesis to those for a cohort of four pregnant rhesus macaques infected with an Asian-lineage isolate and a cohort of mock-inoculated controls. The viral replication kinetics for the two experimental groups were not significantly different, and both groups developed robust neutralizing antibody titers above levels considered to be protective. There was no evidence of significant fetal head growth restriction or gross fetal harm at delivery (1 to 1.5 weeks prior to full term) in either group. However, a significantly higher burden of ZIKV viral RNA (vRNA) was found in the maternal-fetal interface tissues of the macaques exposed to an African-lineage isolate. Our findings suggest that ZIKV of any genetic lineage poses a threat to pregnant individuals and their infants. IMPORTANCE ZIKV was first identified in 1947 in Africa, but most of our knowledge of ZIKV is based on studies of the distinct Asian genetic lineage, which caused the outbreak in the Americas in 2015 to 2016. In its most recent update, the WHO stated that improved understanding of African-lineage ZIKV pathogenesis during pregnancy must be a priority. The recent detection of African-lineage isolates in Brazil underscores the need to understand the impact of these viruses. Here, we provide the first comprehensive assessment of African-lineage ZIKV infection during pregnancy in a translational nonhuman primate model. We show that African-lineage isolates replicate with kinetics similar to those of Asian-lineage isolates and can infect the placenta. However, there was no evidence of more-severe outcomes with African-lineage isolates. Our results highlight both the threat that African-lineage ZIKV poses to pregnant individuals and their infants and the need for epidemiological and translational in vivo studies with African-lineage ZIKV.


Assuntos
Placenta/virologia , Complicações Infecciosas na Gravidez/virologia , Replicação Viral , Infecção por Zika virus/virologia , Zika virus/fisiologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Modelos Animais de Doenças , Feminino , Desenvolvimento Fetal , Cinética , Macaca mulatta , Placenta/patologia , Gravidez , Zika virus/classificação , Zika virus/imunologia
10.
PLoS One ; 12(11): e0188887, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29182680

RESUMO

While all 2-methylene-19-nor analogs of 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) tested produce an increase in epidermal thickness in the rhino mouse, only a subset reduce utricle size (comedolysis). All-trans retinoic acid (atRA) also causes epidermal thickening and a reduction in utricle size in the rhino mouse. We now report that 2-methylene-19-nor-(20S)-1α-hydroxybishomopregnacalciferol (2MbisP), a comedolytic analog, increases epidermal thickening more rapidly than does atRA, while both reduce utricle area at an equal rate. Whereas unlike atRA, 2MbisP does not alter the epidermal growth factor receptor ligand, heparin-binding epidermal growth factor-like growth factor, it does increase the expression of both amphiregulin and epigen mRNA, even after a single dose. In situ hybridization reveals an increase in these transcripts throughout the closing utricle as well as in the interfollicular epidermis. The mRNAs for other EGFR ligands including betacellulin and transforming growth factor-α, as well as the epidermal growth factor receptor are largely unaffected by 2MbisP. Another analog, 2-methylene-19-nor-(20S)-26,27-dimethylene-1α,25-dihydroxyvitamin D3 (CAGE-3), produces epidermal thickening but fails to reduce utricle size or increase AREG mRNA levels. CAGE-3 modestly increases epigen mRNA levels, but only after 5 days of dosing. Thus, 2-MbisP produces unique changes in epidermal growth factor receptor ligand mRNAs that may be responsible for both epidermal proliferation and a reduction in utricle size.


Assuntos
Calcitriol/análogos & derivados , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Pele/efeitos dos fármacos , Tretinoína/farmacologia , Animais , Calcitriol/química , Calcitriol/farmacologia , Receptores ErbB/metabolismo , Feminino , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Ligantes , Masculino , Camundongos , RNA Mensageiro/genética , Receptores de Calcitriol/metabolismo , Pele/metabolismo
11.
Melanoma Res ; 20(1): 35-42, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19949352

RESUMO

Canine malignant melanoma (CMM) resembles human malignant melanoma in terms of metastatic behavior, refractoriness to standard therapy, and tumor antigen expression but it is largely unknown how CMM resembles human melanoma with regard to molecular pathogenesis and cellular signaling. No attempt has been made to systematically define the repertoire of tyrosine kinases (TKs) expressed in CMM. This study used a reverse transcription-PCR display technique to evaluate the expression of multiple TKs in the 17CM98 CMM cell line. RT-PCR was performed using degenerate primers coding for highly conserved regions flanking the kinase domains of many TKs and the repertoire of TKs expressed was determined using standard molecular cloning techniques. Sequencing 46 clones yielded canine homologs of insulin-like growth factor-1 receptor (IGF-1R) (50%), JAK1 (17%), PDGFR-a (11%), FGFR1 (9%), Axl (7%), Abl (4%), and PTK2 (2%). Interestingly, IGF-1R, JAK1, and Axl were detected in human melanoma using similar techniques, supporting the cross-species validity of this assay. Given the abundance of IGF-1R clones, we determined the biological effect of rhIGF-1 in 17CM98 cells. IGF-1 stimulated cell proliferation and vascular endothelial growth factor production in 17CM98, and addition of the IGF-1R inhibitor ADW742 abrogated IGF-1-induced phenotypic changes. Expression of IGF-1R mRNA was detected in five of five additional CMM cell cultures, and IGF-1R protein was detected in five of six primary tumors evaluated, suggesting that IGF-1R expression may be common in CMM and may provide a novel target for future therapy. In conclusion, this study suggests that similar TKs are expressed in human and canine melanoma, and shows potential antitumor effects of IGF-1R inhibition in CMM.


Assuntos
Doenças do Cão/enzimologia , Melanoma/enzimologia , Melanoma/veterinária , Proteínas Tirosina Quinases/biossíntese , Receptor IGF Tipo 1/antagonistas & inibidores , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Neoplasias Cutâneas/veterinária , Animais , Linhagem Celular Tumoral , Doenças do Cão/tratamento farmacológico , Doenças do Cão/patologia , Cães , Humanos , Melanoma/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/genética , Pirimidinas/farmacologia , Pirróis/farmacologia , Receptor IGF Tipo 1/biossíntese , Receptor IGF Tipo 1/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Transdução de Sinais/efeitos dos fármacos , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/enzimologia , Neoplasias Cutâneas/patologia
12.
J Pharmacol Exp Ther ; 329(3): 1148-55, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19307449

RESUMO

Flavin-containing monooxygenases (FMOs) play significant roles in the metabolism of drugs and endogenous or foreign compounds. In this study, the regional distribution of FMO isoforms 1, 3, and 4 was investigated in male Sprague-Dawley rat liver and kidney using immunohistochemistry (IHC). Rabbit polyclonal antibodies to rat FMO1 and FMO4, developed using anti-peptide technology, and commercial anti-human FMO3 antibody were used; specificities of the antibodies were verified using Western blotting, immunoprecipitation, and IHC. In liver, the highest immunoreactivity for FMO1 and FMO3 was detected in the perivenous region, and immunoreactivity decreased in intensity toward the periportal region. In contrast, FMO4 immunoreactivity was detected with the opposite lobular distribution. In the kidney, the highest immunoreactivity for FMO1, -3, and -4 was detected in the distal tubules. FMO1 and FMO4 immunoreactivity was also detected in the proximal tubules with strong staining in the brush borders, whereas less FMO3 immunoreactivity was detected in the proximal tubules. Immunoreactivity for FMO3 and FMO4 was detected in the collecting tubules in the renal medulla and the glomerulus, whereas little FMO1 immunoreactivity was detected in these regions. The FMO1 antibody did not react with human liver or kidney microsomes. However, the FMO4 antibody reacted with male and female mouse and human tissues. These data provided a compelling visual demonstration of the isoform-specific localization patterns of FMO1, -3, and -4 in the rat liver and kidney and the first evidence for expression of FMO4 at the protein level in mouse and human liver and kidney microsomes.


Assuntos
Rim/metabolismo , Fígado/metabolismo , Oxigenases/metabolismo , Isoformas de Proteínas/metabolismo , Animais , Anticorpos/imunologia , Especificidade de Anticorpos/imunologia , Reações Cruzadas/imunologia , Feminino , Complexo de Golgi/metabolismo , Humanos , Córtex Renal/metabolismo , Glomérulos Renais/metabolismo , Medula Renal/metabolismo , Túbulos Renais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos , Microssomos/metabolismo , Oxigenases/imunologia , Isoformas de Proteínas/imunologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA